
Screening of charged singularities of random fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 6763

(http://iopscience.iop.org/0305-4470/37/26/012)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/26
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 6763–6771 PII: S0305-4470(04)66968-X

Screening of charged singularities of random fields

Michael Wilkinson

Department of Applied Mathematics, Open University, Walton Hall, Milton Keynes, MK7 6AA,
England, UK

Received 24 July 2003, in final form 6 May 2004
Published 16 June 2004
Online at stacks.iop.org/JPhysA/37/6763
doi:10.1088/0305-4470/37/26/012

Abstract
Many types of point singularity have a topological index, or ‘charge’, associated
with them. For example, the phase of a complex field depending on two
variables can either increase or decrease on making a clockwise circuit around
a simple zero, enabling the zeros to be assigned charges of ±1. In random
fields we can define a correlation function for the charge-weighted density
of singularities. For many types of topologically charged singularity, this
correlation function satisfies an identity which shows that the singularities
‘screen’ each other perfectly: a positive singularity is surrounded by an excess
of concentration of negatives which exactly cancel its charge, and vice versa.
This paper gives a simple and widely applicable derivation of this result. A
counterexample where screening is incomplete is also exhibited.

PACS numbers: 03.65.Vf, 05.40.−a, 73.43.Cd

1. Introduction

This paper provides a simple and general explanation for a feature which has been noted in
several types of point singularities of smooth randomly defined functions. The phenomenon is
most easily described in terms of a specific example. Consider the set of zeros of a complex-
valued differentiable random function φ, depending on two real variables x = (x, y). It is
assumed that the statistical properties of φ(x) are translationally invariant. The phase of φ

may either increase or decrease by 2π on traversing a clockwise circuit about a simple zero.
Accordingly, the zeros may be described as carrying either positive or negative charges. It
has been noted that positive zeros tend to be surrounded by negative ones, and vice versa:
by analogy with models of ionic fluids and plasmas this has been described as a ‘screening’
effect. It is expressed quantitatively in terms of a correlation function C describing the charge-
weighted density of zeros at positions x and x + X (a precise definition will be given in
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section 2). Perfect screening is characterized by the relation∫
dX C(X) = 0 (1.1)

where the integral extends over the entire two-dimensional plane.
A screening relation of this type was first noted by Halperin [1] as a consequence

of an analytical evaluation of such a correlation function in the case of zeros of complex
functions. The screening relation was also discussed by Liu and Mazenko [2] in a related
context. Later, the effect was surmised to exist in degeneracies of a random matrix model used
to investigate the quantized Hall effect [3]. Numerical demonstrations of perfect screening for
both the zeros and extrema of Gaussian random fields in two dimensions have been published
[4]. More recently, analytical evaluation of correlation functions for several types of point
singularity has provided further evidence that (1.1) is valid in many cases [5–7]. Previously,
the existence of perfect screening has only been demonstrated by calculations of the correlation
function C(X) on a case-by-case basis.

The explanation given here (in section 2) is very simple and widely applicable. It depends
upon an assumption that another correlation function, denoted by D0(s) in section 2, has
an integral which is convergent. This assumption is verified (in the appendix) in a very
general context for random fields with a Gaussian distribution. For non-Gaussian random
fields it is expected to be much easier to establish convergence of this integral than to prove
(1.1) by evaluating C(X) exactly. The argument in section 2 uses the zeros of a complex
function as an illustrative example, and section 3 discusses the more general applications.
The approach is so general that one might expect that the perfect screening described by (1.1)
may be present wherever there is a charge-neutral gas of point singularities, at least when
the random fields do not have long-ranged correlations. One exception to (1.1), relating to
components of eigenvectors of random matrices, is described and explained in section 4. This
counterexample is of some physical interest because it arises in the topological description of
the integer quantized Hall effect, discussed in [8–10].

This paper will use 〈A〉 to denote the ensemble average of a quantity A. Because of the
assumption that the statistics are translationally invariant, the correlation function between
φ(x) and φ(x′) is a function of X = x − x′ only. The correlation function may therefore be
written 〈φ(x)φ(x′)〉 = c(x − x′). It is distinct from that occurring in (1.1), which describes
the singularities of the field.

2. A derivation of the screening relation

Equation (1.1) will be derived for the case of singularities defined on the plane, using the zeros
of a complex function of two real variables, φ(x, y), as an illustrative example.

The strategy is to consider the total topological charge Q enclosed by a curve C which
surrounds an area A. It will be sufficient to consider C to be a circle of radius R in what
follows. The screening relation can be demonstrated in cases where Q can be obtained from
a line integral:

Q =
∫
C

ds F (s) (2.1)

where ds is an element of distance around the boundary and where F(s) is a field that can
be obtained from φ(x, y) by a ‘local’ procedure, so that F is a function of φ and its partial
derivatives. In the case of zeros of a complex-valued function, Q is simply the phase change
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on integrating around the boundary, so that

Q = 1

2π

∫
C

ds Im

[
1

φ

dφ

ds

]
. (2.2)

This expression is in the form (2.1), with F = Im[φ′/φ]/2π .
Now let xi be the locations of the singularities of the field φ. The total charge enclosed in

C is

Q =
∑

{i|xi∈A}
qi (2.3)

where qi are the charges of the individual zeros, which take the values ±1. A charge-weighted
density of zeros, ρ(x), is defined:

ρ(x) =
∑

i

qiδ(x − xi ). (2.4)

The total charge Q enclosed by C can also be expressed in terms of this density:

Q =
∫
A

dAρ(x). (2.5)

Because it was assumed that the random process generating φ(x) is translationally invariant,
correlation functions depend only upon the difference between coordinates. We consider
random processes which are symmetric between positive and negative charges, so that
〈ρ(x)〉 = 0. We define the mean density of zeros (without charge weighting) to be ρ0.
The correlation function that we consider, already referred to in (1.1), is defined by

C(X) = 〈ρ(x + X)ρ(x)〉. (2.6)

This correlation function is the sum of a singular part, ρ0δ(X), and a regular part, which
according to (1.1) is expected to cancel the weight of the delta function when integrated over
all X.

Now consider the correlation function of the quantity F(s) introduced in (2.1). Because
the statistics of φ are translationally invariant and because F(s) is obtained from φ by a local
procedure, the correlation between F(s) and F(s ′) depends upon the distance d between the
points labelled by s and s ′, and on the angle θ between the tangent vectors to the curve C at
these points: we write

〈F(s)F (s ′)〉 = D(d, θ). (2.7)

The choice of the curve C is immaterial to the argument, and in the simple case where we take
this to be a circle of radius R we have d = 2R sin(|s − s ′|/2R), θ = s − s ′/R, so that

〈F(s)F (s ′)〉 = D(|s − s ′|, 0) + O(1/R)

= D0(s − s ′) + O(1/R) (2.8)

where we define D0(d) = D(d, 0), which is the limiting form of the correlation function when
the tangent vectors at the points labelled by s and s ′ are parallel.

Using (2.1) and (2.7), 〈Q2〉 is expressed in terms of the correlation function of F:

〈Q2〉 =
∫
C

ds

∫
C

ds ′D(d, θ). (2.9)

In order to prove (1.1) it will be assumed that the correlation function D0(s − s ′) decays faster
than 1/|s − s ′| as |s − s ′| → ∞, so that its integral is convergent. The appendix presents
an argument showing that this assumption is justified if φ is a Gaussian random function and
if the magnitude of the correlation c(X) = 〈φ(X + x)φ(x)〉 decreases sufficiently rapidly as
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|X| → ∞. Using this assumption about D0(s), in the limit where R → ∞, the integral (2.9)
is dominated by the region where s − s ′ is small:

〈Q2〉 = 2πR

∫ ∞

−∞
ds D0(s) + O(1). (2.10)

To gain information about the correlation function C(X), consider the mean-squared charge:
from (2.7) we have

〈Q2〉 =
∫
A

dx
∫
A

dx′ C(x − x′). (2.11)

Again, consider the case where A is the interior of a circle of radius R. If the integral on the
left-hand side of (1.1) exists, then the integral in (2.11) is dominated by contributions from
where x is close to x′, when R is large, so that

〈Q2〉 = πR2
∫

dX C(X) + O(R). (2.12)

Equations (2.10) and (2.12) are only consistent if the term proportional to R2 in (2.12) vanishes.
This implies that (1.1) is satisfied.

If φ is not Gaussian, there does not appear to be any general argument which indicates
that D0(s − s ′) decays sufficiently rapidly. The argument given in the appendix can be adapted
to various types of non-Gaussian field, but different examples must be treated on a case-by-
case basis. However, it is expected to be much easier to establish that the integral in (2.10)
converges than to establish (1.1), which is an exact identity satisfied by a highly singular
function of the underlying field φ.

3. Generalizations

The argument presented in section 2 may be extended to many different random fields in
different dimensions: there is no requirement that it should be possible to determine the
correlation function C(X) exactly.

The argument for perfect screening might be applicable to any point singularities which
carry indices which we term ‘charges’, when the gas of charges is, on average, neutral.
The critical requirement is that the charge within a closed region can be determined from a
surface integral involving a statistically stationary field F which was derived from the original
random field φ by a locally defined procedure. It was assumed that this secondary field has
a correlation function which decays sufficiently rapidly at infinity, and which depends only
upon the separation of the pair of coordinates.

Most charged point singularities can be detected by using a surface integral. As a second
example, consider stationary points of a real function of two real variables. These may be
characterized by the Poincaré index, which is defined by taking a clockwise circuit around
the singularity. The index is +1 if the angle of the gradient vector rotates by +2π (i.e. in the
same direction as the circuit), and −1 if the gradient vector rotates in the opposite direction
to the circuit. Thus maxima and minima have index +1, and saddles have index −1. Perfect
screening has also been demonstrated in this case by calculating the correlation function
exactly [1, 2], but it is instructive to see how the argument of section 2 is adapted in this simple
case.

If x(s) is the closed curve C, and v(s) = ∇φ(x(s)) is the gradient vector at s, then the
total Poincaré index for the stationary points within C is

Q = 1

2π

∫
C

ds
v ∧ dv

ds

|v|2 =
∫
C

ds F (s) (3.1)
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where the second equality defines F(s) in this example. All of the arguments that were
applied to the function F(s) defined in (2.1) are equally valid for that defined in (3.1). It
follows that the correlation function of the density of extrema weighted by their Poincaré
index also exhibits perfect screening under quite general conditions.

The argument also extends directly to cases in higher dimensions, for example it can be
used to explain the example of perfect screening which was discussed in [3]. The reasoning
for this case will be summarized briefly: the reader should refer to the earlier papers cited
here for definitions of the quantities. Reference [3] considered the density of degeneracies
between pairs of levels in random Hermitian matrices, which were a periodic function of three
parameters, x1, x2 and x3. There is a topological charge, the Chern index, associated with
the energy levels of a two-parameter family of Hermitian matrices which are periodic in two
parameters, x1 and x2. The Chern index is an integer which may represent a quantized Hall
conductance associated with each energy level [8, 9]. Varying the third parameter x3 allows
pairs of levels to become degenerate. When two levels become degenerate, the Chern index
on one level increases by one, while that of the other level decreases by one. This enables
the degeneracies to be assigned a charge of ±1, depending upon the sign of the change of the
Chern index of the upper level resulting from increasing x3 [10]. Reference [10] also shows
that the total charge of the degeneracies of a given level (with label n, say) within a closed
region of the three parameter space is equal to the integral of the Berry phase 2-form Vn [11]
over the surface of the region.

The random matrix model discussed in [3] has statistical properties which are
translationally invariant in x = (x1, x2, x3) space, and this symmtetry means that degeneracies
are equally likely to have either sign. This is analogous to the situation described in section 2:
we have a homogeneous distribution of ‘particles’ (degeneracies) which are equally likely to
have positive and negative charges, and the total charge Q within a three-dimensional region
is obtained by integrating a function, the Berry phase 2-form, over its surface. Considering
a spherical volume of radius R, and writing 〈Q2〉 in terms of the correlation function of
charge density, gives an expression analogous to (2.12), with the leading term being 4πR3/3
multiplied by the integral of the charge density correlation function. Expressing 〈Q2〉
in terms of the surface integral leads to an expression analogous to (2.10) in which the
leading term is 4πR2 multiplied by an integral of the correlation function of the 2-form,
C(x−x′) = 〈Vn(x)Vn(x′)〉. Provided this correlation function vanishes faster than 1/|x−x′|2,
that integral converges, and the correlation function of the charge density satisfies (1.1) (with
the integral now being evaluated over a three-dimensional space). This argument explains the
screening relation noted in [3].

4. A counterexample: zeros of eigenvector components

The discussion in the previous section indicates that the argument explaining perfect screening
is very general, and it might be suspected that perfect screening is universal in charge-neutral
gases of singularities. However this section will describe a counterexample, which arises from
the same random matrix model as was considered in [3]. The mathematical structure of the
model will be explained, but the reader should refer to [3] for a discussion of the physical
motivation of this model.

Consider a complex Hermitian N × N matrix H̃ , with elements Hnm(x1, x2) which are
functions of two real parameters, x1 and x2. The matrix elements Hnm can be Gaussian random
functions, depending smoothly on x = (x1, x2), with a correlation function between Hnm(x)

and Hn′m′(x′) which depends only upon x − x′ and which decays faster than 1/|x − x′| as
|x − x′| → ∞. In this case each component of any eigenvector of H̃ is a complex random
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function of x1 and x2. We consider one arbitrary eigenvector component which will be
termed φ(x1, x2). The function φ(x1, x2) is differentiable at (x1, x2) unless the corresponding
eigenvalue is degenerate at (x1, x2). Three parameters must be varied to cause degeneracies
of eigenvalues of a complex Hermitian matrix, so that we expect φ(x1, x2) to be differentiable
everywhere in the (x1, x2) plane.

Let us consider the zeros of φ. There is nothing to favour one index of these zeros over the
other, so that the distribution of zeros across the (x1, x2) plane is charge neutral. We can ask
whether the screening relation applies to the zeros of the eigenvector component φ(x1, x2). It
will be demonstrated that in the case of 2 × 2 matrices screeening the screening is not perfect.
It will be argued that screening is also not perfect when N > 2.

The indices of zeros of a component of an eigenvector of a two-parameter family of
Hermitian matrices play a role in the topological characterization of the integer quantized Hall
effect [9]. In the case of independent electrons moving through a perfect two-dimensional
crystal, the electron states form bands labelled by two Bloch wavevectors, x1 and x2. The
Hamiltonian is a periodic function of x1 and x2, with a unit cell which is termed the Brillouin
zone. The Hall conductance of a band is Qe2/h, where Q is an integer. One way to calculate
Q involves looking at any component φ of the eigenvector defining the wavefunction of the
band. All of the zeros of φ within a Brillouin zone are located, and their indices qi = ±1 are
determined. The Hall conductance integer Q is then the sum of the indices: Q = ∑

i qi .
In cases where the electrons move in a simple periodic potential the integers Q can be

large (although these situations would be very hard to probe experimentally). If the system is
disordered, or the unit cell is large, it is reasonable to propose using a random matrix model
for the statistical properties of the Chern numbers. An appropriate random matrix model is
described in [3]. The mean Chern number must (by symmetry) be equal to zero: 〈Q〉 = 0.
The simplest statistical characterization of the Chern numbers is through their variance 〈Q2〉.

The random matrix model in [3] was investigated by a combination of analytical and
numerical approaches. Numerical experiments reported there support an expression of the
form

〈Q2〉 = αAσ 2ν2 (4.1)

where

σ 2 = det

[〈
∂En

∂xi

∂En

∂xj

〉]
(4.2)

is a measure of the sensitivity of energy levels to perturbation, ν is the density of states per
unit area, A is the area of the Brillouin zone and α is a constant, determined numerically
to be approximately 0.2 in the limit where the dimension of the matrix is large. Because
equation (4.1) is proportional to A, perfect screening does not apply in the case of zeros of
eigenvector components. We have already seen that screening is predicted by an argument
with a very broad range of applicability. It is desirable to understand why screening fails at
two levels. Firstly, which of the criteria stated in the derivation are not met? And secondly,
can it be seen by an explicit calculation that screening is absent?

First, let us consider the reason why the demonstration presented in section 2 cannot be
applied. The argument uses a function F(s) which yields the phase change upon integration
around the boundary, and the function which was defined there, F(s) = (1/φ)Im(dφ/ds)/2π ,
is also appropriate in this problem. It was assumed that the function F(s) is differentiable and
has a correlation function which is statistically stationary (such that on the circular boundary
〈F(s)F (s ′)〉 is a function of s − s ′ only), and that this correlation function decays faster than
1/|s − s ′|. If φ is a component of an eigenvector of a random matrix, these assumptions about
F(s) may be challenged. In order to apply (2.1) we must asume that φ(x1, x2) is a continuous
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function of x1 and x2. The eigenvectors of a matrix may be multiplied by any complex number
of modulus unity, exp[iθ(x1, x2)] and remain eigenvectors. When constructing φ(x1, x2) from
the random matrix H̃ (x1, x2), the eigenvectors can be produced by some fixed algorithm
(for matrices of dimension N > 4, this is necessarily numerical). This results in a ‘raw’
form for φ(x1, x2) which is both statistically stationary and locally correlated. However, this
function will have discontinuities in phase where the diagonalization algorithm has branches,
which must be removed by multiplying by a suitable factor exp[iθ(x1, x2)]. The function
θ(x1, x2) cannot be constructed by any locally defined algorithm. It is therefore possible that
the resulting regularized φ(x1, x2) may be non-stationary, or non-locally correlated, or both.

This general argument is a little unsatisfying, because it does not show that the perfect
screening effect must fail. However the source of the failure can be seen clearly in the case of
a 2 × 2 Hermitian random matrix, with elements

H̃ (x) =
(

f1(x) f2(x) + if3(x)

f2(x) − if3(x) −f1(x)

)
(4.3)

where x = (x1, x2), and we assume that the real-valued random functions fi(x) satisfy

〈fi(x)〉 = 0 (4.4)

〈fi(x + x0)fj (x0)〉 = δijCi(|x|). (4.5)

The eigenvalues E± and corresponding normalized eigenvectors u± are

E± = ±
√

f 2
1 + f 2

2 + f 2
3 (4.6)

u± = exp[iθ±]√
(E± − f1)2 + f 2

2 + f 2
3

(
f2 + if3

E± − f1

)
(4.7)

where all the variables are real functions of x, and where θ±(x) is chosen so that the
first component of u± is a continuous function of x. Let us consider the first component
of the eigenvector corresponding to the E+ branch, calling this function φ(x). Writing
ψ(x) = f2(x) + if3(x) and dropping the subscript on θ+, we have

φ(x) = exp[iθ ]ψ√[√
f 2

1 + |ψ |2 − f1
]2

+ |ψ |2
. (4.8)

Consider the behaviour of φ at a zero of ψ . At each zero of ψ , we have E+ = |f1|. We must
consider two cases, depending upon whether f1 is positive or negative. If f1 is negative at the
zero of ψ , then in the neighbourhood of this zero we have

φ ∼ exp[iθ ]ψ

2|f1| (4.9)

so that φ has a zero with the same index as ψ, θ having no singularity at these points. In the
case where f1 is positive at the zero of ψ , in the neighbourhood of this point we have

φ ∼ exp[iθ ]ψ

|ψ | . (4.10)

At these zeros of ψ, φ does not have a zero. If φ is to be a continuous function, θ must have a
singularity in which it increments by ±2π on making a circuit around the zero of ψ , in order
to cancel the phase singularity of ψ/|ψ |.
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We can now give a clear picture of why screening is not perfect in the eigenvector
component φ, for the special case of this 2 × 2 random matrix model. We have seen that the
zeros of φ have the same indices as those of ψ , which do exhibit perfect screening. However,
only a randomly chosen half of the zeros of ψ (selected by the criterion that f1 is negative at
the zero) are represented as zeros of φ. It is therefore not expected that the delicate balance
implied by perfect screening will be present in the zeros of φ. In the limit where the correlation
length of f1(x) is made short compared to that of f2 and f3, the deleted zeros are selected
completely randomly.

This conclusion can be expressed quantitatively as follows. The sign-weighted density of
zeros of the eigenvector component φ(x) is

ρφ(x) = χ(f1(x))ρψ(x) (4.11)

where ρψ(x) is the sign-weighted density of zeros of ψ = f2 + if3, and the factor χ(f1(x))

selects those zeros for which f1(x) is negative: χ(x) is unity if x is negative, zero otherwise.
Using the fact that f1 is independent of ψ , we have

Cφ(x) = 〈χ(f1(x0))χ(f1(x0 + x))〉Cψ(x)

= Cχ(x)Cψ(x) (4.12)

where the second equality defines Cχ(x). The function Cψ satisfies equation (1.1). The
function Cφ need not. For example, if f1 has a correlation length which is short compared
to f2 and f3, the correlation length of Cχ will also be short compared to that of Cψ .
Equation (4.12) shows that in this limiting case the screening effect would be absent from the
eigenvector component φ.

Appendix

This appendix discusses the calculation of the correlation function 〈F(s)F (s ′)〉, in the limit
where the separation |s − s ′| is large. It is assumed that F(s) is a function of the field φ(s) and
its derivative φ′(s), that is F(s) = F(φ(s), φ′(s)) for some function F(a, b), but the argument
is easily extended to cases where F(s) depends on higher derivatives. The argument can also
be adapted to higher dimensions. The calculation discussed here does use the assumption that
the field φ is Gaussian, but extensions to non-Gaussian fields are possible.

It will be shown that 〈F(s)F (s ′)〉 decays no more slowly (as |s − s ′| → ∞) than the most
slowly decaying of the correlations 〈φ(s)φ(s ′)〉, 〈φ′(s)φ′(s ′)〉, 〈φ′(s)φ(s ′)〉. The correlation
functions of derivatives are related to the derivatives of the correlation function, for example
if 〈φ(s)φ(s ′)〉 = c(s − s ′), then 〈φ′(s)φ′(s ′)〉 = −c′′(s − s ′).

The joint probability density for N Gaussian random variables (x1, x2, . . . , xN)T = X, all
of which satisfy 〈xi〉 = 0, is

µ(X) = [(2π)NdetC̃]−1/2 exp
(− 1

2 XT C̃−1X
)

(A.1)

where C̃ is the correlation matrix of the random variables xi , with elements

Cij = 〈xixj 〉. (A.2)

Now write X = (x1, x2)
T , x1 = (φ(s), φ′(s))T , x2 = (φ(s ′), φ′(s ′))T , and write the correlation

matrix (A.2) in the form

C̃ =
(

Ã ε(s − s ′)ã(s − s ′)
ε(s − s ′)ã(s − s ′) Ã

)
(A.3)

where Ã and ã are 2 × 2 matrices; Ã is independent of s − s ′, ã has elements which are
bounded as |s − s ′| → ∞ and ε is a function of s − s ′ which decays no more rapidly than the
most slowly decreasing correlation function of φ and φ′ as |s − s ′| → ∞.
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When |ε| is sufficiently small, the inverse of C̃ is approximated by

C̃−1 =
(

Ã−1 −εÃ−1ãÃ−1

−εÃ−1ãÃ−1 Ã−1

)
+ O(ε2). (A.4)

We also have det(C̃) = [det(Ã)]2 +O(ε2). Using (A.4) and (A.1), the joint probability density
for x1 and x2 is

µ(X) = µ(x1, x2) = 1

(2π)2det(Ã)
exp

[
−1

2
(x1, x2)

T C̃−1(x1, x2)

]
+ O(ε2)

= µ0(x1)µ0(x2) exp
[
εxT

1 Ã−1ãÃ−1x2
]

+ O(ε2) (A.5)

where

µ0(x) = 1

2π
√

detÃ
exp

[
−1

2
xT Ã−1x

]
(A.6)

is the marginal probability density of x = (φ, φ′).
The correlation function 〈F(s)F (s ′)〉 = 〈F(x1)F(x2)〉 is

〈F(s)F (s ′)〉 =
∫

dx1

∫
dx2 µ(x1, x2)F(x1)F(x2). (A.7)

The expectation 〈F(s)〉 is given by an analogous expression, in which F(x) is integrated over
x with weight µ0(x). Expanding the exponential in (A.5), and using the fact that 〈F(s)〉 = 0
gives

〈F(s)F (s ′)〉 = ε

∫
dx1

∫
dx2 µ0(x1)µ0(x2)F(x1)F(x2)xT

1 Ã−1ãÃ−1x2 + O(ε2)

= εgT Ã−1ãÃ−1g + O(ε2) (A.8)

where

g =
∫

dx xF(x)µ0(x). (A.9)

Equation (A.8) shows that the correlation function 〈F(s)F (s ′)〉 is O(ε), implying that it is
bounded by a multiple of the most slowly decaying correlation function of the fields occurring
as arguments of the function F . It follows that the correlation function of F(s) will decay
sufficiently rapidly at infinity if the correlation function of the fields has a sufficiently rapid
decay.

This approach extends directly to non-Gaussian fields in the case where the joint
probability density factorizes in the limit |s − s ′| → ∞, such that µ(x, x′) = µ0(x)µ0(x′)
[1 + O(ε)].
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